A High-Spin Nickel(III) Complex

By C. C. Addison and B. G. WARD (Department of Chemistry, The University, Nottingham)

THE number of known nickel(III) compounds is small;¹ most of them are complexes in which the nickel(III) state is stabilised by organic ligands or fluorine. In all cases the nickel(III) ion is in the low-spin (one unpaired electron) configuration. For the organic complexes μ_{eff} is near 2.0 B.M., and μ_{eff} for K₃NiF₆ is 2.15 B.M.²

We have now isolated a tetranitratonickel(III) complex which we believe to be the first example of the nickel(III) oxidation state in high-spin configuration. The product of reaction of anhydrous nickel(II) chloride, or nickel(II) nitrate dihydrate with excess of dinitrogen pentoxide is a flocculent, pale green powder of composition $Ni(NO_3)_3, N_2O_5$. The NO_2^+ ion is well characterised in the infrared spectrum, and comparison of the spectrum with

those^{3,4} for $[Fe(NO_3)_4]^-$, $[Al(NO_3)_4]^-$, $Pd(NO_3)_4$, and $Sn(NO_3)_4$ leave no doubt that the solid complex contains the anion $[Ni^{III}(NO_3)_4]^-$. In freshly prepared aqueous solutions the Ni : NO_3 ratio is 1 : 5, and the iodine liberated from potassium iodide corresponds to conversion of all the nickel content from Ni³⁺ to Ni²⁺. Under vacuum, N₂O₅ is evolved, and below room temperature the composition approaches that of the simple nitrate $Ni(NO_3)_3$.

The magnetic susceptibility of the complex $(NO_2^+)[Ni^{III}(NO_3)_4]^-$ is 4.54 \pm 0.02 B.M. at 21°. This is to be compared with the spin-only value of 3.83 B.M. for 3 unpaired electrons, but is of the same order as μ_{eff} for four-co-ordinate high-spin cobalt(II) complexes (4.2-4.8 B.M.¹).

(Received, October 3rd, 1966; Com. 736.)

- ¹ B. N. Figgis and J. Lewis, *Progr. Inorg. Chem.*, **1964**, **6**, **37**. ² W. Klemm, W. Brandt, and R. Hoppe, *Z. anorg. Chem.*, **1961**, **308**, 179. ³ C. C. Addison, P. M. Boorman, and N. Logan, *J. Chem. Soc.*, **1965**, 4978.
- ⁴ C. C. Addison and W. B. Simpson, J. Chem. Soc., 1965, 598.